



# Low Drift, Low Power Instrumentation Amplifier

## **1 FEATURES**

- Fixed Gain: 10
- Low Offset Voltage: ±70µV (TYP)
- High CMRR: 110dB (TYP)
- Low Input Bias Current: 0.5nA (TYP)
- Supply Range: ±2.3 V to ±16 V
- Input Voltage: (V-)+0.6V to (V+)-1.5V
- Low Quiescent Current: 3.4mA
- Operating Temperature: -40°C to +125°C
- Micro Size Packages: SOP8

## **2 APPLICATIONS**

- Weigh Scales
- Transducer Interface and Data Acquisition Systems
- Industrial Process Controls
- Battery-Powered and Portable Equipment

## **3 DESCRIPTIONS**

The RS631B device is a low-power, precision instrumentation amplifier offering excellent accuracy. The versatile 3-operational amplifier design, small size, and low power make it ideal for a wide range of portable applications.

Provides multiple fixed gain configurations.

The RS631B device provides very low offset voltage  $(\pm 70\mu V)$ , and high common-mode rejection (110dB). It operates with power supplies as low as 4.6V ( $\pm 2.3V$ ) and quiescent current is only 3.4mA, making it ideal for battery operated systems. Using autocalibration techniques to ensure excellent precision over the extended industrial temperature range.

The RS631B device is available in SOP8 packages. It operates over an ambient temperature range of  $-40^{\circ}$ C to  $+125^{\circ}$ C.

#### **Device Information**<sup>(1)</sup>

| Berlee information                                               |         |                 |  |  |  |  |  |  |
|------------------------------------------------------------------|---------|-----------------|--|--|--|--|--|--|
| PART NUMBER                                                      | PACKAGE | BODY SIZE (NOM) |  |  |  |  |  |  |
| RS631B                                                           | SOP8    | 4.90mm×3.90mm   |  |  |  |  |  |  |
| 1) For all available packages, see the orderable addendum at the |         |                 |  |  |  |  |  |  |

 For all available packages, see the orderable addendum at the end of the data sheet.

#### **Simplified Schematic**





# **Table of Contents**

| <b>1 FEATURES</b>                             |
|-----------------------------------------------|
| 2 APPLICATIONS                                |
| 3 DESCRIPTIONS                                |
| 4 Revision History                            |
| 5 PACKAGE/ORDERING INFORMATION <sup>(1)</sup> |
| 6 Pin Configuration and Functions             |
| 7 SPECIFICATIONS                              |
| 7.1 Absolute Maximum Ratings6                 |
| 7.2 ESD Ratings                               |
| 7.3 Recommended Operating Conditions          |
| 7.4 ELECTRICAL CHARACTERISTICS                |
| 7.5 TYPICAL CHARACTERISTICS9                  |
| 8 Application and Implementation              |
| 8.1 Ground Returns for Input Bias Currents10  |
| 9 PACKAGE OUTLINE DIMENSIONS                  |
| 10 TAPE AND REEL INFORMATION                  |



**4 Revision History** Note: Page numbers for previous revisions may different from page numbers in the current version.

| Version | Change Date | Change Item               |
|---------|-------------|---------------------------|
| A.1     | 2024/04/12  | Initial version completed |



## **5 PACKAGE/ORDERING INFORMATION**<sup>(1)</sup>

| PRODUCT | ORDERING<br>NUMBER | TEMPERATURE<br>RANGE | PACKAGE PACKAGE<br>LEAD MARKING <sup>(2)</sup> |        | MSL <sup>(3)</sup> | PACKAGE OPTION      |
|---------|--------------------|----------------------|------------------------------------------------|--------|--------------------|---------------------|
| RS631B  | RS631BXK-G         | -40°C ~125°C         | SOP8                                           | RS631B | MSL1               | Tape and Reel, 4000 |

NOTE:

(1) This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the right-hand navigation.

(2) There may be additional marking, which relates to the lot trace code information (data code and vendor code), the logo or the environmental category on the device.

(3) MSL, The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications.



# 6 Pin Configuration and Functions



#### **Pin Description**

| PIN  | NAME              |   | DESCRIPTION                                   |  |  |  |  |
|------|-------------------|---|-----------------------------------------------|--|--|--|--|
| SOP8 |                   |   |                                               |  |  |  |  |
| 1    | NC <sup>(2)</sup> | - | No internal connection (can be left floating) |  |  |  |  |
| 2    | -IN               | I | Inverting input                               |  |  |  |  |
| 3    | +IN               | I | Noninverting input                            |  |  |  |  |
| 4    | V-                | - | Negative (lowest) power supply                |  |  |  |  |
| 5    | REF               | I | Reference input                               |  |  |  |  |
| 6    | OUT               | 0 | Output                                        |  |  |  |  |
| 7    | V+                | - | Positive (highest) power supply               |  |  |  |  |
| 8    | NC <sup>(2)</sup> | - | No internal connection (can be left floating) |  |  |  |  |

(1) I = Input, O = Output.

(2) There is no internal connection. Typically, GND is the recommended connection to a heat spreading plane.



## 7 SPECIFICATIONS

#### 7.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) <sup>(1)</sup>

|             |                                                                                                                                                                     |       | MIN      | MAX      | UNIT |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|----------|------|
| Valtaga     | Supply Voltage                                                                                                                                                      |       |          | 34       | V    |
| voitage     | Analog input voltage <sup>(2)</sup>                                                                                                                                 |       | (V-)-0.3 | (V+)+0.3 |      |
|             | Signal input pin <sup>(2)</sup>                                                                                                                                     |       | -10      | 10       | mA   |
| Current     | Signal output pin <sup>(3)</sup>                                                                                                                                    | -10   | 10       | mA       |      |
|             | Signal input pin <sup>(2)</sup> -10   Signal output pin <sup>(3)</sup> -10   Output short-circuit <sup>(4)</sup> Cc   Package thermal impedance <sup>(5)</sup> SOP8 | Conti | nuous    |          |      |
| ΑLθ         | Package thermal impedance <sup>(5)</sup>                                                                                                                            | SOP8  |          | 110      | °C/W |
|             | Operating range, T <sub>A</sub>                                                                                                                                     |       | -40      | 125      |      |
| Temperature | Junction, T <sub>J</sub> <sup>(6)</sup>                                                                                                                             |       | -40      | 150      | °C   |
|             | Storage, T <sub>stg</sub>                                                                                                                                           |       | -65      | 150      |      |

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

(2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3V beyond the supply rails should be current-limited to 10 mA or less.

(3) Output terminals are diode-clamped to the power-supply rails. Output signals that can swing more than 0.3V beyond the supply rails should be current-limited to ±10mA or less.

(4) Short-circuit to ground, one amplifier per package.

(5) The package thermal impedance is calculated in accordance with JESD-51.

(6) The maximum power dissipation is a function of  $T_{J(MAX)}$ ,  $R_{\theta JA}$ , and  $T_A$ . The maximum allowable power dissipation at any ambient temperature is  $P_D = (T_{J(MAX)} - T_A) / R_{\theta JA}$ . All numbers apply for packages soldered directly onto a PCB.

### 7.2 ESD Ratings

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

|           |                                            |                            | VALUE | UNIT |
|-----------|--------------------------------------------|----------------------------|-------|------|
| M         | V <sub>(ESD)</sub> Electrostatic discharge | Human-body model (HBM)     | ±2000 | V    |
| V(ESD) EI |                                            | Charged-device model (CDM) | ±1500 | V    |



## ESD SENSITIVITY CAUTION

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

#### 7.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted).

|                       |               | MIN  | NOM | MAX | UNIT |
|-----------------------|---------------|------|-----|-----|------|
| Supplyvaltage         | Single-supply | 4.6  |     | 32  | V    |
| Supply voltage        | Dual-supply   | ±2.3 |     | ±16 | v    |
| Specified temperature |               | -40  |     | 125 | °C   |



## 7.4 ELECTRICAL CHARACTERISTICS

Gain=10, Vs=±15V, T<sub>A</sub>=25°C (unless otherwise noted.) <sup>(1)</sup>

| 140051                                             |                                                  |                        |                           |                        |              |
|----------------------------------------------------|--------------------------------------------------|------------------------|---------------------------|------------------------|--------------|
| MODEL                                              | CONDITIONS                                       | MIN <sup>(2)</sup>     | <b>TYP</b> <sup>(3)</sup> | MAX <sup>(2)</sup>     | UNIT         |
| GAIN                                               |                                                  |                        |                           |                        |              |
| Gain Error                                         | V <sub>OUT</sub> = ±10 V                         |                        | 0.21                      | 0.6                    | %            |
| Nonlinearity,<br>V <sub>OUT</sub> = -10 V to +10 V |                                                  |                        | 30                        |                        | ppm of<br>FS |
| Gain vs Temperature                                |                                                  |                        | 18                        |                        | ppm/°C       |
| TOTAL VOLTAGE OFFSET                               |                                                  | •                      |                           |                        |              |
| Offset (RTI) <sup>(4)</sup>                        | Vs = ±16 V                                       | -150                   | ±70                       | 150                    | μV           |
| Average TC                                         |                                                  |                        | 10                        |                        | μV/°C        |
| Offset Referred to the Input vs<br>Supply (PSR)    | $V_{s} = \pm 2.3 \text{ V to } \pm 16 \text{ V}$ | 95                     | 115                       |                        | dB           |
| Total NOISE                                        |                                                  |                        |                           |                        |              |
| Voltage Noise (RTI)                                | 0.1 Hz to 10 Hz                                  |                        | 1.45                      |                        | μVр-р        |
| INPUT CURRENT                                      |                                                  |                        |                           |                        |              |
| Input Bias Current <sup>(5)(6)</sup>               | Vs = ±15 V                                       | -3                     | 0.5                       | 3                      | nA           |
| Over Temperature <sup>(5)</sup>                    |                                                  | -5                     |                           | 5                      | nA           |
| Input Offset Current <sup>(5)</sup>                |                                                  | -1                     |                           | 1                      | nA           |
| Over Temperature <sup>(5)</sup>                    |                                                  | -1.5                   |                           | 1.5                    | nA           |
| INPUT                                              |                                                  |                        |                           | ·                      |              |
| Input Impedance                                    |                                                  |                        |                           |                        |              |
| Differential                                       |                                                  |                        | 10  2                     |                        | GΩ∥pF        |
| Common-Mode                                        |                                                  |                        | 10  2                     |                        | GΩ∥pF        |
| Common-Mode Rejection Ratio                        | (V-)+0.6V < V <sub>CM</sub> <(V+)-1.5V           | 90                     | 110                       |                        | dB           |
| OUTPUT                                             |                                                  |                        |                           |                        |              |
|                                                    | $R_L = 10k\Omega$ , $V_S = \pm 2.3V$ to $\pm 5V$ | -Vs + 0.15             |                           | +Vs - 0.15             | V            |
| Output Swing                                       | $R_L = 10k\Omega$ , $V_S = \pm 5V$ to $\pm 15V$  | -V <sub>s</sub> + 0.35 |                           | +V <sub>s</sub> - 0.35 | V            |
| Short Current Circuit (7)(8)                       |                                                  | ±70                    | ±80                       |                        | mA           |
| DYNAMIC RESPONSE                                   |                                                  |                        |                           |                        |              |
| Small Signal,–3 dB Bandwidth                       |                                                  |                        | 900                       |                        | kHz          |
| Slew Rate <sup>(9)</sup>                           |                                                  |                        | 1.1                       |                        | V/µs         |
| Settling Time                                      | 10 V Step                                        |                        | 20                        |                        | μs           |
| REFERENCE INPUT                                    |                                                  |                        |                           |                        |              |
| Rin                                                |                                                  |                        | 20                        |                        | kΩ           |
| Voltage Range                                      |                                                  | -Vs                    |                           | +Vs                    | V            |
| POWER SUPPLY                                       |                                                  |                        |                           |                        |              |
| Operating Range                                    |                                                  | ±2.3                   |                           | ±16                    | V            |
| Quiescent Current                                  | V <sub>s</sub> = ±2.3 V to ±16 V                 |                        | 3.4                       | 4.5                    | mA           |
| TEMPERATURE RANGE                                  | •                                                |                        |                           |                        |              |
| For Specified Performance                          |                                                  | -40                    |                           | 125                    | °C           |





NOTE:

- (1) Electrical table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device.
- (2) Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using statistical quality control (SQC) method.
- (3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.
- (4) RTI = Referred-to-input.
- (5) This parameter is ensured by design and/or characterization and is not tested in production.
- (6) Positive current corresponds to current flowing into the device.
- (7) The maximum power dissipation is a function of  $T_{J(MAX)}$ ,  $R_{\theta JA}$ , and  $T_A$ . The maximum allowable power dissipation at any ambient temperature is  $P_D = (T_{J(MAX)} T_A) / R_{\theta JA}$ . All numbers apply for packages soldered directly onto a PCB.
- (8) Short circuit test is a momentary test.
- (9) Number specified is the slower of positive and negative slew rates.



## **7.5 TYPICAL CHARACTERISTICS**

NOTE: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only.



Figure 1. Quiescent Current vs Temperature



Figure 3. Small Signal Pulse Response



Figure 5. Closed-Loop Gain vs Frequency



Figure 2. Offset Voltage vs Common-Mode Voltage







Figure 6. 0.1Hz to 10Hz RTI Voltage Noise



## **8 Application and Implementation**

Information in the following applications sections is not part of the RUNIC component specification, and RUNIC does not warrant its accuracy or completeness. RUNIC's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

#### **8.1 Ground Returns for Input Bias Currents**

Input bias currents are those currents necessary to bias the input transistors of an amplifier. There must be a direct return path for these currents; therefore when amplifying "floating" input sources such as transformers, or ac-coupled sources, there must be a dc path from each input to ground as shown in Figures 7 through 9.



Figure 7. Ground Returns for Bias Currents when Using Transformer Input Coupling



Figure 8. Ground Returns for Bias Currents when Using a Thermocouple Input



Figure 9. Ground Returns for Bias Currents when Using AC Input Coupling



#### 9 PACKAGE OUTLINE DIMENSIONS SOP8<sup>(3)</sup>





#### RECOMMENDED LAND PATTERN (Unit: mm)





| Sympol            | Dimensions I | n Millimeters       | Dimensions In Inches |                     |  |  |
|-------------------|--------------|---------------------|----------------------|---------------------|--|--|
| Symbol            | Min          | Min Max             |                      | Max                 |  |  |
| A <sup>(1)</sup>  | 1.350        | 1.750               | 1.750 0.053          |                     |  |  |
| A1                | 0.100        | 0.250               | 0.004                | 0.010               |  |  |
| A2                | 1.350        | 1.550               | 0.053                | 0.061               |  |  |
| b                 | 0.330        | 0.510               | 0.013                | 0.020               |  |  |
| с                 | 0.170        | 0.250               | 0.007                | 0.010               |  |  |
| D <sup>(1)</sup>  | 4.800        | 5.000               | 0.189                | 0.197               |  |  |
| e                 | 1.270(       | BSC) <sup>(2)</sup> | 0.050(               | BSC) <sup>(2)</sup> |  |  |
| E                 | 5.800        | 6.200               | 0.228                | 0.244               |  |  |
| E1 <sup>(1)</sup> | 3.800        | 4.000               | 0.150                | 0.157               |  |  |
| L                 | 0.400        | 1.270               | 0.016                | 0.050               |  |  |
| θ                 | 0°           | 8°                  | 0°                   | 8°                  |  |  |

NOTE:

1. Plastic or metal protrusions of 0.15mm maximum per side are not included.

2. BSC (Basic Spacing between Centers), "Basic" spacing is nominal.

3. This drawing is subject to change without notice.



## **10 TAPE AND REEL INFORMATION**

**REEL DIMENSIONS** 

TAPE DIMENSION



NOTE: The picture is only for reference. Please make the object as the standard.

#### **KEY PARAMETER LIST OF TAPE AND REEL**

| Package Type | Reel     | Reel      | A0   | B0   | K0   | P0   | P1   | P2   | W    | Pin1     |
|--------------|----------|-----------|------|------|------|------|------|------|------|----------|
|              | Diameter | Width(mm) | (mm) | Quadrant |
| SOP8         | 13"      | 12.4      | 6.40 | 5.40 | 2.10 | 4.0  | 8.0  | 2.0  | 12.0 | Q1       |

NOTE:

1. All dimensions are nominal.

2. Plastic or metal protrusions of 0.15mm maximum per side are not included.



## IMPORTANT NOTICE AND DISCLAIMER

Jiangsu RUNIC Technology Co., Ltd. will accurately and reliably provide technical and reliability data (including data sheets), design resources (including reference designs), application or other design advice, WEB tools, safety information and other resources, without warranty of any defect, and will not make any express or implied warranty, including but not limited to the warranty of merchantability Implied warranty that it is suitable for a specific purpose or does not infringe the intellectual property rights of any third party.

These resources are intended for skilled developers designing with RUNIC products You will be solely responsible for: (1) Selecting the appropriate products for your application; (2) Designing, validating and testing your application; (3) Ensuring your application meets applicable standards and any other safety, security or other requirements; (4) RUNIC and the RUNIC logo are registered trademarks of RUNIC INCORPORATED. All trademarks are the property of their respective owners; (5) For change details, review the revision history included in any revised document. The resources are subject to change without notice. Our company will not be liable for the use of this product and the infringement of patents or third-party intellectual property rights due to its use.