集成多路模擬開關(以下簡稱多路開關)是自動數據采集、程控增益放大等重要技術領域的常用器件,其實際使用性能的優劣對系統的嚴謹和可靠性重要影響。關于多路開關的應用技術,些文獻上介紹有兩點不足:一是對器件自身介紹較多,而對器件與相關電路的合理搭配與協調介紹較少;二是原則性的東西介紹較多,而操作性的東西介紹較少。研究表明:只有正確選擇多路開關的種類,注意多路開關與相關電路的合理搭配與協調,保證各電路單元有合適的工作狀態,才能充分發揮多路開關的性能,甚至彌補某性能指標的欠缺,收到預期的效果。本文從應用的角度出發,研究多路開關的應用技巧。目前市場上的多路開關以CMOS電路為主,故以下的討論除特別說明外,均針對這類產品。
1 “先斷后通”與“先通后斷”的選擇
目前市場上的多路開關的通斷切換方式大多為“先斷后通”(Break-Before-Make)。在自動數據采集中,應選用“先斷后通”的多路開關。否則,就會發生兩個通道短接的現象,嚴重時會損壞
信號源或多路開關自身。然而,在程控增益放大器中,若用多路開關來改變集成運算放大器的反饋電阻,以改變放大器的增益,就不宜選用“先斷后通”的多路開關。否則,放大器就會出現開環狀態。放大器的開環增益極高,易破壞電路的正常工作,甚至損壞元器件,一般應予避免。
2 選擇合適的傳輸信號輸入方式
傳輸信號一般有單端輸入和差動輸入兩種方式,分別適用于不同的場合。單端輸入方式如圖1所示,即把所有信號源一端接同一信號地,信號地與ADC等的模擬地相接,各信號源的另一端分別接多路開關。圖中Vs為傳輸信號,Vc為系統中的共模干擾信號。圖1(a)接法的優點是無需減少一半通道數,也可保證系統的共模抑制能力;缺點是僅適用于所有傳輸信號均參考一個公共電位,且各信號源均置于同樣的噪聲環境下,否則會引入附加的差模干擾。圖1(b)接法適用于所有傳輸信號相對于系統模擬公共地的測量,且信號電平明顯大于系統中的共模干擾。其優點是可得到最多的通道數,缺點是系統基本失去了共模抑制能力。差動輸入方式如圖2所示,即把所有信號源的兩端分別接至多路開關的輸入端。其優點是抗共模干擾的能力強,缺點是實際通道數只有單端輸入方式的一半。當傳輸信號的信噪比較低時,必須使用差動輸入方式。
3 減小導通電阻的影響
多路開關的導通電阻RON(一般為數10Ω至1kΩ左右)比機械開關的接觸電阻(一般為mΩ量級)大得多,對自動數據采集的信號傳輸精度或程控制增益放大的增益影響較明顯,而且RON通道隨電源電壓高低、傳輸信號的幅度等的變化而變化,因而其影響難以進行后期修正。實踐中一般是設法減小RON來降低其影響。以CD4051為例,測試發現[1]:CD4051的RON隨電源電壓和輸入模擬電壓的變化而變化。當VDD=5V、VEE=0V時,RON=280Ω,且隨V1的變化突變;當VDD>10V、VEE=0V時,RON=100Ω,且隨V1的變化緩變。可見,適當提高CD4051的VDD有利于減小RON的影響。必須注意:提高VDD的同時,應相應提高選通控制端A、B、C的輸入邏輯電平。例如:取VDD=12V(VEE=0V),可采用電源電壓上拉箝位的方法,上拉電阻的阻值取1.5kΩ以上,使選通控制端信號的有效高電平不低于6V。這樣,既保證CD4051理想導通(RON小,又實現了CMOS電平與TTL電平的轉換(μP一般為TTL電平)。
?