什么是比較器?它和放大器有什么不同?
我們從工程學教程里了解到,運算放大器需要三個內部級才能發揮出最佳性能,比如實現高輸入阻抗、低輸出阻抗和高增益等。三個內部級分別是差分輸入級、增益級(有或沒有內部頻率補償)和輸出級。這種基本的體系結構已經沿用了好幾十年。早期,運算放大器曾作為數學運算的基本器件,主要以電壓和電壓信號來作標識。在反饋應用中,通過配置放大器周邊的無源或有源器件,可以令系統執行加、減、乘、除和對數等運算。
比較器其實可看成一個能夠作邏輯 “決策”的邏輯輸出電路。換句話說,它可把輸入信號與已定義的參考電平進行比較。比較器的邏輯輸出功能可以幫助用戶設計具有多樣化的額外功能的模擬電路。而且,無論是高速ADC、SAR型ADC還是Sigma-Delta ADC,比較器都是組建集成ADC的內部基本而又關鍵的模塊。
比較器的基本體系結構和大部份的參數屬性都與運算放大器類似。因此,運算放大器也可充當比較器。但放大器并不是專門針對比較功能而開發的,而且放大器的數據表一般都不保證這項功能可否正常實現。運算放大器與比較器的最大分別在于比較器是開環設計,沒有反饋環節,而且輸出會在任何一條電源軌的范圍內顯示差分輸入信號的極性。
此外,比較器一般都會被設計成 “過壓驅動”(overdriven),意思是它可經常處理較大的差分輸入電壓。相反,對于運算放大器而言,它通常被設計成在較小的信號和差分電壓下運行,而這里的反饋概念通常都含有 “過驅” 意義,這樣會導致開環配置中的輸入出現飽和效應。如果將輸入的極性倒轉,則過驅時產生的輸入級的飽和會導致信號的傳播具有一定的延遲或相位滯后。
再者,對于較大的差分輸入電壓來說,運算放大器的輸出很容易到達極限輸出,從而啟動保護功能。保護功能的啟動將會導致輸入阻抗的量級明顯下降,迫使過量的電流涌到輸入級,造成過載,甚至過熱。如果在設計上沒有保護的措施,那便可能導致整個器件損毀。因此,在器件的數據表,通常都會提供器件的最大輸入電流的額定值,以幫助設計人員決定用多少附加輸入電阻。
比較器和運算放大器之間最基本的區別就是他們具有不同的輸出級結構。開漏或開集(以MOSFET為例)輸出都有一個可用作輸出但卻不內部連接到V+的節點,而一個連接正電源電壓的外部電阻器會在晶體管被關閉時將輸出拉成 “高”。這個外部電壓可以高于VCC,并且允許電平移位或可通過平行數個器件的兩個或更多個輸出來達到所謂的 “Wired-Or”2 功能 。假如內部的晶體管啟動,一個細小的電流會從外部電源經過上拉電阻器流進器件輸出,并令輸出電壓級轉換成 “低” 和接近VCE (雙極晶體管中的集極-發射極電壓)。
比較器通常都不進行頻率補償功能,因此其工作速度相當高,同時開關時間也在某程度上取決于 “過驅”的程度。圖1表示出當衡量一個輸出狀態變化時的差分輸入電壓。從圖中可看出過驅需要高于失調電壓才可以保證比較器有效地進行工作。一般來說,較大的過驅可加快開關時間。
比較器一般都以參數值和/或功能來分類,例如:
圖1 輸入過驅和相關的傳播延遲消散
·通用比較器;
·高速比較器(傳播延遲少于50毫微秒);
·低壓比較器(電源電壓VCC低于5V);
·微功率比較器(靜態電流低于20微安);
·集成參考的比較器。
比較器的特性取決于其類別,分別為:
·傳播延遲—由施加一個差分信號與切換狀態的輸出級之間的時間延遲 (例如是50%)。
·內部或外部滯后— 滯后是一種介乎低到高開關電壓和高到低開關電壓之間的設計預算中或需激活的差別。有些比較器具備可調節滯后水平的功能,方法是通過在指定的引腳上施加電壓。
·上升及下降時間—一般是輸出電壓的10%至90%的時間,并且上升和下降緣的時間可以有差別,假如這情況出現,那將會導致輸出的周期時間會相對于輸入信號而改變。
·觸發率—指在某一個頻率下,比較器的輸出可以跟隨輸入的狀態來變化。
·消散—量度傳播延遲變化的參數。
·抖動—可以是隨機或事前決定,負責量度信號緣在時間上的不定性。 將運算放大器作為比較器使用
由于運算放大器一般都是雙路/四路的配置,用戶可以考慮將多出來的放大器做為比較器來用。如前所述,此時有不少地方需注意。首先,時間選擇很關鍵。當把運算放大器用作比較器時,其本身的增益帶寬乘積、群延遲和壓擺率等參數很可能會因內部頻率補償和飽和效應而誤產生變化。對于優化的單器件來說,這種應用不失為一種經濟增值方案。可是,對于比較復雜和可能阻礙性能發揮的四路器件來說,這種方案不但所占的空間較多,而且需要花費更多時間測試和調試以確
保運算放大器的特性能夠配合。運放用作比較器時需要注意以下幾點:
·細閱數據表上敘述的運放拓撲和提示信息。
·注意源阻抗、共模輸入范圍和差分輸入范圍。
·放大器在過驅時的開關速度并計劃為這參數進行大型擴展。
·注意溫度變化帶來的影響。
·通過檢查負載阻抗、電源水平和電路的穩定性來確保輸出已正確地連接到下一級。
·小心處理電路的設計和布局,例如即使只有很微量的輸出通過分布電容和/或高輸入阻抗被正反饋引入到輸入端,都有可能引起振蕩。
現代高速比較器
現今業界常用的比較器大多數是經過優化設計的,可為系統帶來增值效益。最普遍的比較器應用類別是電平平移。現今,TTL和CMOS邏輯電平均已被廣泛采用。對于高速應用而言,還可采用ECL(發射極耦合邏輯)、RSPECL(擺幅削減正發射極耦合邏輯)或LVDS(低壓差分信號)。當需要從電纜和線路連接IC和FPGA,或在背板內的信號速度處于由每秒數百兆位至數千兆位的高速范圍時,上述方案便會成為首選。
假如典型的上升和下降時間為160ps,而典型的傳播延遲則為700ps,那便可促使該比較器為高速至每秒數千兆位的信號進行緩沖和電平平移,從而使電路適合應用在高速數據、時移、緩沖,或是來自電纜或背板的信號恢復。一個可調節的滯后可通過HYST引腳來施行,這做法對于失真信號或DC耦合線路或移動緩慢的信號來說最為受用,因為這可避免出現不必要的開關和觸發。圖2中的應用電路表示出輸入VCCI信號是處于系統接地電平,而VCCO電平和VEE電平則分別處于+5V和-5.2V(這便是ECL驅動器負電源電平)。此外,輸出電壓將可符合RSPECL的規格。同一個器件可以用來介接到其他的邏輯電平,只需稍為調節VCCI和VCCO及VEE電壓電平便可。加入例如是50W的適當線路端接是有可能的,圖3所示為一基本端接例子。
圖3中的差分輸出以一個跟隨著電源電流的發射極來實現,并且確保兩個輸出引腳之間的擺幅差別有400mV。假如這里采用有源端接,那電壓便會低于VCCO電平2V,否則每當端接到芯片的最負電源時,便需計算出正確的負載電阻。
一個 “新類別”—精度比較器
一般比較器都有約10mV或更大的輸入失調電壓。精度型比較器的優點很明顯,因為它可比較微弱信號。迄今為止,仍有人采用運算放大器作為比較器,就是因為一般的比較器不具有足夠的精度。在電池電量監測應用中,當充電/放電的電壓梯度相對平坦時,便可采用這些參數。其他特色功能包括低功耗、高精度,及可調整的檢測閾值。
圖5 非對稱滯后的典型配置
圖5表示出可用來提供非對稱滯后的內部參考和四個外部電阻器。電路中的跳變點可用下式4和5計算出來,至于滯后輸入電壓和電流范圍以及參考負載電流數值則可從數據表中找到,但這些數值可能會限制了真正的電阻值范圍和比率。
結語
如今,比較器是業界應用極其廣泛的標準元件。比較器具有外部滯后、鎖存、靈活的電源電壓和輸出配置等多項功能和特性。此外,對比較器的傳播延遲、消散、觸發率或精準失調等關鍵參數可以滿足一系列高性能應用的需求,例如電平平移、電源監測、時鐘/數據緩沖以及接收和觸發等。雖然運算放大器也可用作比較器,但在應用時需要加倍小心才能確保器件的正常工作。